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Abstract 

The aim of this paper is to present an efficient numerical strategy for the simulation of convection-diffusion phase 
change problems in saturated porous media with spatially variable permeability. An efficient and accurate finite volume 
method is used to discretize in space leading to a semi discrete differential algebraic system DAE. Suitable numerical 
techniques are implemented to solve the stiff system resulting from the strong coupling between the equations of the 
model. The proposed method is applied on evaporation in heterogeneous saturated porous media. 1D and 2D 
simulations are presented, where we suppose that the soil is constituted by blocks of different permeability. 
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1. Introduction 
 
Heat flow accompanied by a phase change with 

variable permeability, occurs in many important practical 
problems. In particular the heat diffusion in the ground 
saturated by water has pressed upon the attention to 
develop new methods for more precise representative 
simulations. The large number of published papers on 
heat transfer and fluid flow through porous media 
demonstrates clearly that this area of fluid mechanics has 
been studied extensively during the last three decades 
[4], [5]. 

 
Actually, the aim of this work is to present the 

applied mathematics used to study prehistoric fires. It is 
related to the drying process problem studied, among 
others by [7] and [8]. The idea is to apply a numerical 
model to calculate the heat conduction in porous soils 
subjected to intense heat from above. This particular 
geometry requires that the heat prevents the usual 
behavior of water in the ground, because the vapor 
ascends to the heated surfaces. Subsequently, the 
mathematical model delineating our problem is described 
by coupled systems of moving boundary problem with 
phase change and the convection phenomenon under a 
downward facing heated surface. 

 Due to the absorption or release of latent heat and 
the presence of complex interfacial structures that 
characterize the problem of evaporation, the exact 
solution of conservation equations is impossible. Here, 
we choose a model consisting of a single region that 
utilizes a system of conservation equations that can be 
equally applied to both phases [1], [2]. The latent heat 

evolution is accounted for in the energy equation by the 
enthalpy formulation [1], while no explicit conditions on 
the interface are required and the numerical solution can 
be carried out on a fixed grid. However, the numerical 
treatment of phase change problems requires special 
attention to handle the latent heat evolution associated 
with the phase change and the high nonlinearity 
presented in the system of equations due to the fact that 
all the soil properties are temperature dependent. 

The purpose of this paper is to use an efficient and 
accurate numerical method to deal with binary water-
vapor phase change problem in a heterogeneous 
saturated porous medium; this numerical has been 
presented elsewhere [2]. A control volume numerical 
method combined with a modified Newton method is be 
used, and there is a coupling between the energy 
equation and the water steam flow model, like in [6]. 

In this paper the authors would like to show the 
effects of the heterogeneity on the position of the 
interface of phase change at 100°C.  

2. Mathematical formulation 
        
      Consider a horizontal surface embedded in a water 
saturated porous medium of variable permeability as 
shown in Fig. 1. The temperature of the surface facing 
downward is Tc, which is greater than the temperature T∞ 
of the medium. 



 

 

 

 

 

 

 

 

Fig. 1 Physical description of the medium. 

 

     When a heated region in the soil reaches vT  

(temperature of evaporation which is approximately 
100°C), the water existing in the soil turns into v apor 
flowing in the ground. As the bottom of the domain is 
closed, the only possibility for the water steam to escape 
the porous medium is to flow upward to the ground, 
leading a counter-current heat flow, as shown in Fig. 1. 

2.1. Model equations 
 
      In order to model the heat transfer in the soil, we use 
the energy equation. We assume that the two phases 
(porous matrix and fluid phase) are in local equilibrium, 
so that the energy conservation equation is expressed as 
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where T represents the temperature, ρ is the density, c 

is the apparent capacity, k is the conductivity, Vf is the 
filtration velocity of the fluid; the subscripts e and f 
indicate respectively the equivalent parameters of the 
medium and the properties of the fluid. 
     The effective calorific capacity being additive, the 
effective value ec)(ρ is then defined by 
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Where the subscript s indicates the properties of the 
porous matrix, ss c,ρ are constants, otherwise, 

ff c,ρ are temperature dependent. The porosity φ is 

used as the water content in the soil (we suppose that 
the medium is saturated by water). 
       On the other hand, in order to model the fluid motion 
through the porous medium, we use the Darcy flow 
model formulation 
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where fV is the filtration velocity of the fluid, K is the 

permeability (variable in space and constant in time), 

fµ is the viscosity of the fluid phase (water or vapor) and 

fP is the fluid pressure. Hence, the continuity equation is 

given by 
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The resulting equation obtained by coupling Eq. 2 and 
Eq. 3, which models the water steam flowing in the 
heterogeneous media, is thus given by 
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The system of equations is completed by adequate initial 
and boundary conditions. 

2.2. Apparent heat capacity formulation (AHC) 
 
To avoid the tracking of the interface, the AHC 

method is used because it allows for a continuous 
treatment of a system involving phase transfer. In this 
method [1], the latent heat is calculated by integrating the 
heat capacity over the temperature, and the domain is 
considered to be treated as one region. A direct 
evaluation, in fact, can be expressed to lead to 
satisfactory numerical integrations only if the thermo-
physical properties versus temperature curves do not 
present sharp peaks in the range of interest. If, instead, a 
“true” evaporation process is considered, difficulties are 
likely to arise. 

In fact, when the temperature approaches the phase 
change temperature, the equivalent heat capacity tends 
to the shape of the Dirac σ function and, therefore cannot 
be satisfactory represented across the peak, by any 
smooth function. Such extreme problems can be 
successfully tackled by the technique already presented 
in [2], where a more appropriate averaging process is 
employed.  

To alleviate the singularity presented in the 
formulation of thermo-physical properties defined by [1] 
(see Fig. 2 continuous lines), the Dirac delta function can 
be approximated by the normal distribution 
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in which ε is chosen to be T∆= 2/12/1ε , where T∆ is 
one-half of the assumed phase change interval and vT is 

the phase change temperature. Consequently, the 
integral of dTd /σ  yields the error functions 
approximations for the initial phase fraction. With 
conventional finite volume method, the initial phase 
fraction derived from dTd /σ integration should be used 
to avoid the numerical instabilities arising from the jump 
in the values of the volumetric fraction of initial phase 
from zero to one. In our approach, the smoothed 
coefficients (see Fig. 2 dashed lines) could be written as 
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where L is the latent heat of phase change and the 
subscripts l and v indicate respectively the properties of 
the liquid phase (water) and the properties of the vapor. 
       Similar techniques are used in the model for the best 
determination of the other physical properties of the 
medium (density and viscosity). 



 

 

 

 

 

 

 

 

Fig. 2 Equivalent thermo-physical properties in the  AHC 
method. 

        The mathematical description of these coefficients 
allows a global treatment of the system. However, the 
matrices of the thermo-physical properties are now 
strongly time dependent (the set of equations modeling 
the problem is highly non-linear), through the variation of 
coefficients with temperature, and a completely new 
solution has to be obtained at each stage. The evaluation 
of temperature dependent quantities requires special 
care, particularly if a rather coarse mesh is employed and 
spatial variation of the quantities is abrupt. 

3. Numerical strategy 
 
      The problem to be solved may be written in vectorial 
form with adequate initial and boundary conditions 
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where γ andθ depend on )(Tσ and 
dT

dσ . 

      The first equation of the system (Eq. 9) is an ordinary 
differential one, on the other hand, the second equation 
is a differential algebraic equation of index one, because 
θ may be zero. 
Among the large variety of existing approaches used to 
solve such systems, the following methodology has been 
chosen: 

� The use of the method of lines where space and 
time discretizations are considered separately 

� Spatial discretization: finite volume method 
� An appropriate DAE solver is used 

       After the spatial discretization by the finite volume 
method in 2D, we obtain the semi-discrete system of 
DAE, which writes 
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        Let [ ]TPTY ,= . By classical transformations, the 
system can be written with the general form 
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        In order to solve (Eq. 11), the integration method 
used in our model is the variable order, variable 
coefficient BDF (Backward Differentiation Formula), in 
fixed leading-coefficient form. Actually, the BDF method 
is well adapted to our problem which becomes more and 
more stiff as T∆ decreases. The numerical calculation is 
performed with the use of the MUESLI FORTRAN library 
[3] which is based on the DASSL DAE solver of SLATEC. 
The model has been implemented in 1D and 2D 
geometric configurations. 

4. Some validation examples 

4.1. Heat conduction in a saturated homogeneous 
soil 

 
Several experiments have been done at the 

archaeological soil of Pincevent to study the minimal 
duration of prehistoric fire. In this example we provide a 
comparison between numerical simulation and results 
coming from a real experiment. A real fire is lighted at the 
surface of a clay soil and the temperature is measured at 
different depths in the soil using sensors inserted at 
different positions under the fire. 

 

Fig. 3 Comparison between numerical results and 
experimental data (realized on the archaeological h earths at 
Pincevent site; a real fire has been used). 

       We suppose that the permeability of the medium is 
uniform, so we have: 
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Figure 3 shows the comparison at different depths. 
The temperature of the real fire was measured at the 
center of the fire and used as a boundary condition for 
the simulation (we supposed that the temperature of the 
fire is uniform). The predicted temperatures from the 
numerical simulation in Fig. 3 almost match the 
experimental values of temperatures with a very small 
difference especially at the plateaus location (the 
plateaus at the phase change temperature observed in 
(Fig. 3) are due to the phase change phenomenon). 



 

 

 

 

 

 

 

     Possible explanations for these deviations include the 
fact that domain size is too small to accurately represent 
the zero-flux boundaries. Moreover, we are uncertain 
about the values of the thermal properties for the soil. But 
the main idea of this paper is to test whether the plateau 
of Fig. 3 (in the T1 sensor) is related to variable 
permeability of the soil. 

4.2. Heat conduction in a saturated soil with spati ally 
variable permeability 

 
In this section, we examine how the phenomenon of 

spatial variable permeability affects the flow and heat 
transfer from a uniform temperature heated surface. In 
particular, we assume that the medium consists of 
different blocks of constant permeability which can take 
many patterns. In the following, red blocks are of 
permeability 10-12 m2 and the blue ones are of 10-14 m2. 
We suppose that the considered soil is a water saturated 
clay soil initially at 20°C, the temperature of the  supposed 
fire at the surface of the soil is 400°C. The heati ng 
process is 12 hours long.  Domain extents is 0.025 m 
long and 0.10 m deep. Numerical grid is 12 by 48. 

 
Let’s consider first the 1D problem. Figure 4 shows the 
phase-change interface (at 100°C) position when the  soil 
is considered as horizontal layers of constant 
permeability. An important point, already emphasized in 
[2] is that the coupling between the water steam flow and 
the heating process delays the displacement of the 
interface (green curve compared to the blue one). 
Another interesting point is that a sudden increase in 
permeability also delays the interface movement. 

 
 
Fig. 4 Phase-change interface position for differen t 

cases: (blue) heating without coupling, (green) 
homogeneous permeability, (magenta) weak difference  in 
permeability and (red) strong difference. 

 
Figure 5 presents the time evolution of temperature at 
each 15 first node, like sensors. In this case, the ratio in 
the permeability is 10. We can notice that for some 
sensors, there is a long plateau, like in the experiments 
of Fig 3. 

If we consider now vertical blocks (permeability ratio of 
10), the simulation must be done in 2D. As before, the 
heat transfer is delayed in the less permeable block, as 
shown in Fig. 6 

 

 
Fig. 5 Temperature evolution at each node of the me sh 

(along the vertical direction). 

 

Fig. 6 Temperature evolution for two fixed sensors,  when 
the soil is constituted by two vertical blocks: eac h curve 
has the same color as the corresponding block. 

Lastly, we consider the heating of a soil made by squared 
blocks, as shown in Fig. 7. Whole temperature field is 
shown in Fig 8 in pseudo colors, whereas two fixed 
sensors reveal temperature evolution in Fig. 7. 

 

Fig. 7 Temperature evolution for two fixed sensors,  when 
the soil is constituted by repeated square blocks.  



 

 

 

 

 

 

 

 

 

Fig. 8 Temperature field. Phase-change interface is  shown 
by the white line. 

 

 

 

 

Fig. 9 Pattern for the simulation. Due to symmetry,  only the 
half of the square blocks is considered. Dirichlet condition 
is applied on the top, whereas Neumann condition is  
applied to others. 

 



 

 

 

 

 

 

 

5. Conclusions 

In this work, different heterogeneous cases have been 
studied. While the 1D and 2D cases are very simple, 
numerical simulations shows interesting features; one of 
them is the plateau in the temperature evolution for 
specific sensors. As this is our first results, work is in 
progress to improve the scheme in the codes, in order to 
suppress the numerical instabilities, shown in fig. 6 and 
7. Last, we hope to obtain other results for finest grids. 
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